M.SC. (Ag) in Agroforestay

Set No. 1

Question Booklet No.

0013

16P/300/2

	(To be fi	lled up by	the candi	date by b	lue/blac	k ball-po	int pen)		
Roll No.								7 /	
Roll No. (Write the	ligits in v	vords)			-Cd	PN	014	73)
Serial No.	of OMR A	nswer Sh	eet	201	(ر)				
Day and 1	Date	•••••					(Signatu	re of Invigi	ilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that is contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as

Total No. of Printed Pages: 28

[उपर्युक्त निर्देश हिन्दी में अनिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK

रफ़ कार्य

No. of Questions: 120

Time: 2 Hours			Full Marks : 360	
Not	t e : (1) Attempt as many questions	as yo	ou can. Each question carries 3
		(Three) marks. One mark	will b	e deducted for each incorrect
				varded for each unattempted
		question.		•
(2) If more than one alternative answers seem to be approximate to				
the correct answer, choose the closest one.				
, and should the				
01.	The	art of growing and reproduc	ing a	forest is known as :
	(1)	Silviculture	(2)	Mensuration
	(3)	Ecology	(4)	Ecosystem
02.	Ider	ntification of trees according	to spe	cies is called :
	(1)	Forestry	(2)	Silvics
	(3)	Ecology	(4)	Dendrology
03.	A m	ixed stand is one in which le	ss tha	in% of the trees are
		ame species :		of the frees are
	(1)	75 to 80	(2)	60 to 70
	(3)	50	(4)	30 to 40

04.	Day length or influences diameter growth in trees :			
	(1)	Photoperiod	(2)	Photorespiration
	(3)	Photosynthesis	(4)	Respiration
05.	In II	ndia plantation forestry was st	artec	d in :
	(1)	1942	(2)	1842
	(3)	1947	(4)	1847
06.	Livir	ng fossil is :		
	(1)	Rhododendron spp.	(2)	Gingko biloba
	(3)	Sesquioia semeperverens	(4)	Coelacanths
07.	The	study of life history and gen	eral	characteristics of forest trees
	and	crops with reference to enviro	nme	nt is called:
	(1)	Silviculture	(2)	Silvics
	(3)	Agronomy	(4)	Ecology
08.	Shor	rea robusta is :		9
	(1)	Susceptible to drought	(2)	Drought hardy
	(3)	Moderately drought hardy	(4)	Highly drought hardy

09.	. Nitrogen fixing non-leguminous tree is :				
	(1)	Dalbergia		2)	Acacia
	(3)	Leucaena		4)	Casuarina
10.	The	dieback is common disease	e in :		
	(1)	Teak	(2	2)	Deodar
	(3)	Sal	(4	1)	Sissoo
11.	Arra	ngement of individual soil	partic	les	into aggregates is called :
	(1)	Soil class	(2		Soil structure
	(3)	Soil texture	(4)	Soil group
(3) 13. In fide (1) (3)	andian cation	Cyclic succession Secondary succession	(2) (4) forest (2) (4)	ty	Primary succession Seasonal succession pes based on classi- Coppen Champion and Seth
(1)		cm depth cm depth	(2) (4)	1(ooil moisture from up to : 00 cm depth 00 cm depth

15.	Sorghum forage poisoning is caused by:			
	(1)	Fumic acid	(2)	HCN
	(3)	Oxalic acid	(4)	Gibberellic acid
16.	Scio	n is :		
20.	(1)	Graft of shoot	(2)	Graft of root
	(3)	A bud	(4)	Clone
17.				ring trees combined with crops
	and	or animals on the same unit	of la	nd is termed as:
	(1)	Agroforestry		
	(2)	Sustainable forest managem	ent	4
	(3)	Social forestry		
	(4)	Farm forestry		
18.	Soc	ial forestry was first coined by	:	
	(1)	Westoby	(2)	Shah
	(3)	Brandis	(4)	Nair
		Sust introduced by	•	
19.	Tai	angya was first introduced by	01100050	Noir
	(1)	Dr. Brandis	(2)	Nair
	(3)	Clements	(4)	L.S. Khanna

20 . T	The practice of managing rows of closely planted woody plants with		
a	nnual crops planted in alleys	in betv	veen hedges is called as:
(1) Hedge row intercropping	(2)	Woody hedgerows
(3	B) Soil conservation hedges	(4)	Multipurpose tree gardens
21. Th	he most suitable species for re-	clamat	ion of sandy soils is :
(1		(2)	Acacia spp.
(3)	Melia dubia	(4)	
22. Ag	roforestry D & D covering entirence own as :	re ecol	ogical zone within a country is
(1)	Macro D & D	(2)	Micro D & D
(3)	Meso D & D	(4)	Technology design
23. Jhu	uming is the other name of:		
(1)	Shifting cultivation	(2)	Taungya
(3)	Permaculture	(4)	Biodynamic agriculture
24. For peral millet cultivation, India has been divided into			
(1)	6	(2) 5 (4) 7	

25.	. Based on the nature of components, Nair (1985) classified th			
	Agro	oforestry system into	•••••	Groups:
	(1)	Four	(2)	Five
	(3)	Six	(4)	Sixteen
26.	A ho	ormone which is also known as	s stre	ess hormone in plants is:
	(1)	ethylene	(2)	auxin
	(3)	gibberellins	(4)	ABA
27.	Nitor	rgen fixing ability of Casuarina	a is a	attributable to :
	(1)	Azotobacter	(2)	Frankia
	(3)	Rhizaobium	(4)	Azospirillum
28.	Shift	ting cultivation is most prevale	ent ir	1:
	(1)	North East India	(2)	Eastern part of India
	(3)	Northern part of India	(4)	Southern part of India
29	Cen	tral Arid Research Institute is	loca	ted at:
<u>.</u>	(1)	Jabalpur	(2)	Jhansi
	(3)	Jodhpur	(4)	Dehradun

30.	ICF	ICFRE is located at:				
	(1)	New Delhi	(2)	Dehradun		
	(3)	Jhansi	(4)	Ibadan		
31.	Gre	en gold is :				
	(1)	Sal	(2)	Sandal		
	(3)	Bamboo	(4)	Teak		
32.	Hon	ne garden is highly suitable f	or:			
	(1)	Humid/sub humid region	(2)	Arid/semi arid region		
	(3)	Hilly region	(4)	High lands		
33.	Gen	erally Shelter belt assumes t	he sh	ape of :		
	(1)	Quadrangle	(2)	Rectangle		
	(3)	Triangle	(4)	Trapezoidal		
34.	The	combination of wheat with eu	ıcalyp	otus was common in :		
	(1)	Punjab	(2)	Rajasthan		
	(3)	Karnataka	(4)	Orissa		

35.	The queen of timbers is:			
	(1)	Rose wood	(2)	Vagai
	(3)	Teak	(4)	Eucalyptus
	2.0	6		
36.	Agro	forestry practice of growing Alb	izia le	bbeck with sorghum is called:
	(1)	Hydromorphic system		
	(2)	Xexomorphic system		
	(3)	Mesophytic system		
	(4)	Geomorphic system		
37.	Silv	ipasture means :		
	(1)	Growing trees with grass		ai •1
	(2)	Growing trees with annuals		
	(3)	Growing trees with fruit crop	S	
	(4)	Growing trees with medicina	l plai	nts
			1.4 h	on mongared on '
38.	On	slopping ground, the dbh sho	ula D	
	(1)	Down hill side	(2)	Accessible side
	(3)	Up hill side	(4)	Non accessible side
				\$P

39	. Bro	eaking of seed dormancy by	low to	emperature treatment of moist
	see	ed in termed as:		
	(1)	stratification	(2)	vernalization
	(3)	seasification	(4)	hardening
40	. Vol	ume of log is calculated by u	sing t	he following formula :
	(1)	G/4 × 1	(2)	$(g^2/4) \times 1$
	(3)	$(g / 4)^2 \times 1$	(4)	G/4 × ½
41.	Pre	ssler's increment borer is us	ed to	determine :
	(1)	Increment of a tree	(2)	Height of a tree
	(3)	Volume of a tree	(4)	Age of a tree
42.	The	formula for converting d.o.b.	into o	d.u.b. is:
	(1)	$g = g' - 2\pi t$	(2)	$g' = g - 2\pi h$
	(3)	$g = d' - 2\pi t$	(4)	$g = g' - 2\pi h$
13.	The	branch of forestry which dea	ls with	the determination of dimen-
	sion	, form, age and increment of	single	trees, stands or whole woods
	eithe	er standing or after felling is	called	:
	(1)	Dendrology	(2)	Forest management
	(3)	Dendrometry	(4)	Forest protection

44.	Orth	notropic growth refers to:		
	(1)	Tree	(2)	Shrub
	(3)	Herb	(4)	Creeper
45.	Pign	nents which prevent photo oxi	datio	n of chlorophyll are :
	(1)	Phycobillins	(2)	Carotionoids
	(3)	Phytochromes	(4)	Cryptochromes
46.	The	First Environmental Law in Ir	ıdia v	vas enacted in :
	(1)	1950	(2)	1960
£3	(3)	1970	(4)	1980
47.	Kan	ha National Park is located in	:	
	(1)	Karnataka	(2)	Uttar Pradesh
	(3)	Madhya Pradesh	(4)	Assam
48.	Firs	et Indian Forest Act was drafte	d in t	the year :
	(1)	1865	(2)	1848
		1894	(4)	1927

49. The Head Quarters of Inspec	ctor General of Forest is in :
(1) Dehra Dun	(2) Missouri
(3) Delhi	(4) Mumbai
50. The project tiger was launch	ed in the year :
(1) 1972	(2) 1995
(3) 1973	(4) 1980
51. First Indian Inspector Genera	al of forest was:
(1) Dictrich Brandis	(2) M.D. Chaturvedi
(3) Dr. Troup	(4) Schlich
52. Gas released from paddy stra	wis:
(1) Methane	(2) CO ₂
(3) NO ₂	(4) CO
53. The technical name of Earth S	Summit 1992 was :
(1) Convention on Biological	
(2) Helsinki	a
(3) G 15	
(4) Montreal Protocol	

54.	Khus oil extracted from which species:				
	(1)	Vatever zuzonoides	(2)	Saccharum spontaneum	
	(3)	Dactyloriza hategeria	(4)	Pennisetum typhoideum	
55.	Whe	ere ICFRE is situated :			
	(1)	Coimbatore	(2)	New Delhi	
	(3)	Jabalpur	(4)	Dehradun	
56.	Whi	ch of these is a non-coppice :			
	(1)	Dalbergia	(2)	Albizzia	
	(3)	Cedrus	(4)	Salix	
57.	C:1	N ratio is a measure of :			
	(1)	Nitrate status in soil	(2)	Organic matter	
	(3)	CO ₂ in soil	(4)	Biomass carbon	
58.	Wh	ere is ICRAF situated :			
	(1)	Nairobi	(2)	Indonesia	
	(3)	Rome	(4)	Pakistan	

. Th	e primary purpose of blo	cking in	field experimentation is to re-
du	ce:		
(1)	experimental error	(2)	block error
(3)	replication error	(4)	treatment error
. Th	e error degree of freedom	(DF) for	7 treatments laid out in latin
sqı	are design (LSD) is:		
(1)	20	(2)	30
(3)	36	(4)	42
Mo	st resistant compound for	degradati	on is :
(1)	Cellulose	(2)	Hemicellulose
(3)	Lignin	(4)	Protein
The	correct sequence of nitrog	gen miner	alization process is :
(2)	Ammonium ⇒ Amino Ac	eid ⇒ Nita	rite ⇒ Nitrate
(3)	Amino Acid ⇒ Ammoniu	m ⇒ Nitri	te ⇒ Nitrate
(4)	Amino Acid ⇒ Ammonius	m ⇒ Nitra	ate ⇒ Nitrite
			and and an analysis of the second analysis of the second and an analysis of the second and an analysis of the second analysis of the second and an analysis
	(1) (3) The squ (1) (3) The (1) (2) (3)	duce: (1) experimental error (3) replication error The error degree of freedom square design (LSD) is: (1) 20 (3) 36 Most resistant compound for (1) Cellulose (3) Lignin The correct sequence of nitro (1) Ammonium ⇒ Amino Ac (2) Ammonium ⇒ Amino Ac (3) Amino Acid ⇒ Ammonium	(1) experimental error (2) (3) replication error (4) 7. The error degree of freedom (DF) for square design (LSD) is: (1) 20 (2) (3) 36 (4) Most resistant compound for degradati (1) Cellulose (2) (3) Lignin (4) The correct sequence of nitrogen miner (1) Ammonium ⇒ Amino Acid ⇒ Nitr (2) Ammonium ⇒ Amino Acid ⇒ Nitr (3) Amino Acid ⇒ Ammonium ⇒ Nitri

63.	If a microorganism has their body C: N ratio 6: 1, what will be the					
	exac	exact value of the substrate C: N ratio that can be decomposed:				
	(1)	6:1	(2)	12:1		
	(3)	18:1	(4)	24:1		
64.	Whi	ch one amongst the following	has t	he constant value ?		
	(1)	Bulk density	(2)	Particle density		
	(3)	Porosity	(4)	Viscosity		
65.	The	term ozonosphere is synonym	ious	to:		
	(1)	Troposphere	(2)	Stratosphere		
	(3)	Mesosphere	(4)	Thermosphere		
6 6.		some altitude the temperature	e abr	uptly increases instead of de-		
	crea	sing, the process is called.		·		
	(1)	Temperature gradient	(2)	Lapse rate		
	(3)	Adiabatic lapse rate	(4)	Inversion		

67.	Wh	Which one type of the monsoon in India is responsible for most of the			
	rai	nfall ?			
	(1)	North – East	(2)	North - West	
	(3)	South - East	(4)	South - West	
68.	Wh	ich growth regulator is respor	nsible	for apical dominance ?	
	(1)	Auxin	(2)	Cytokinin	
	(3)	Gibberellin	(4)	Abscisic acid	
				* .	
69.	The	law of optima was given by :		*	
	(1)	Wilcox	(2)	Blackman	
	(3)	Mitscherlich	(4)	Liebig	
70.	If a	soil has EC > 4, ESP > 15 and	pH <	8.5 that will be:	
	(1)	Acidic soil	(2)	Saline soil	
	(3)	Saline – alkaline soil	(4)	Alkali soil	

71.	Which one is 2:2 type clay mineral?				
	(1)	Kaolinite	(2)	Illite	
	(3)	Montmorillonite	(4)	Vermiculite	
72.	Whe	en only furrows are opened for	or sov	wing of the seed, that type of	
	tilla	ge is known as :			
	(1)	Stubble mulch tillage	(2)	Zero tillage	
	(3)	Minimum tillage	(4)	Conventional tillage	
73.		erything else may wait but no	t agr	riculture" – the famous state-	
	(1)	Pt. Jawahar Lal Nehru	(2)	Lal Bahadur Shastri	
	(3)	Indira Gandhi	(4)	Mahatma Gandhi	
74.		contribution of agriculture in fact of the modern economy i		P is continuously decreasing.	
	(1)	Dependency on agriculture is	s inc	reasing	
	(2)	Dependency on agriculture i	s dec	creasing	
	(3)	No change in dependency or	agri	iculture	
	(4)	Can't be said			

75. How many agro-ecological zones in India are found?				
(1) 15	(2) 18			
(3) 21	(4) 24			
76. The minamata disease is caused	d by the toxicity of :			
(1) Cadmium	(2) Arsenic			
(3) Lead	(4) Mercury			
77. Methane emission mostly occurs	s in :			
(1) Rice field	(2) Wheat field			
(3) Cotton field	(4) Maize field			
78. LER > 1 indicates that:	*			
(1) Pure cropping is disadvanta	geous			
(2) Intercropping is disadvantageous				
(3) Both are disadvantageous	•			
(4) Non one is disadvantageous	•			
79. Under normal condition which typ	oe of absorption months ()			
(1) Active absorption	(2) Passive absorption			
(3) Aerial absorption	(4) Foliar absorption			
80. Energy status of water at saturation				
(1) O	(2) < 0			
(3) > 1	(4) ∞			
19	8			

81.	World Agroforestry Centre was initially known as:			
	(1)	NRCAF	(2)	ICRAF
	(3)	ICRISAT	(4)	ICARDA
82.	Avai	lable water is found in betwee	n:	
	(1)	FC - TWP	(2)	FC – PWP
	(3)	FC – UWP	(4)	FC – IWP
83	Whi	ch one amongst these potentia	al is r	positive ?
00.	(1)	Matric	(2)	Osmotic
		Gravitational	(4)	Pressure
0.4			- C T	de Congetie Plains comes un-
84.		the group of:	oi inc	do-Gangetic Plains comes un-
	(1)	Class I	(2)	Class II
	(3)	Class III	(4)	Class IV
			.14	is called drought resistant?
85.	Whi	ch one amongst the group of f		s is called drought resistant?
	(1)	C ₃	(2)	
	(3)	Kharif	(4)	Rabi
86.	Refl	ectant type of antitranspirant	is:	ž.
	(1)	PMA	(2)	Atrazine
	(3)	Hexadeconol	(4)	Kaolin

87.	App gen	olication of herbicides after ce is called :	sow	wing of the crop but before emer-
	(1) (3)	Fallow application Pre emergence application	- 10	(2) Pre plant application(4) Post emergence application
	(3)	Inorganic herbicides	(2 (4	(2) Foliage active herbicides (3) Organic herbicides
	(1)	Reduction division Vertical division	(2 (4	2) Equitorial division4) Horizontal division
91. G	(2) (2) (3) H (4) H Same	riety of crop developed by pu Composite Synthetic Hybrid Population of plants with sa te in plants are :	me g	genotype
(3)	B) Ti ne ma) A	riploid ale sterile line in a cross to p line line	(4)	Polyploid Polyploid duce hybrid seed is known as: B line R line

93.	Whe	eat is a:		
	(1)	Self pollinated crop	(2)	Cross pollinated crop
	(3)	Often cross pollinated crop	(4)	Self incompatible crop
04	The	need rate (a/ha) of tomata is:		
Σ Τ.		seed rate (g/ha) of tomato is:		400 500
	(1)	100-150	(2)	400-500
	(3)	800-900	(4)	1000-1100
95.	Alte	rnate bearing is most commor	in:	
	(1)	Guava	(2)	Pear
	(3)	Apple	(4)	Mango
96.	Blue	e colour tag is used for :		
,	(1)	Nucleus seed	(2)	Breeder seed
	, ,	Foundation seed	(4)	Certified seed
97	Diag	crisia obliqua is the scientific r	name	of:
91.		Termite	(2)	Bihar hairy caterpiller
	(1) (3)	Top borrer	(4)	Leaf hopper
	(3)	Top borrer	X 7	
98.	Albi	ugo candida is the causal orga	nism	of:
	(1)	Late bligtht of potato	(2)	Early blight of potato
	(3)	White rust of crucifers	(4)	Ergot of bajra
00	Des	erve Bank of India was establ	ished	in the year of:
99.		1932	(2)	1934
	(1)		(4)	1938
	(3)	1935		

100. Par	100. Panchayati Raj System in India was intorduced at the recommenda-					
tio	tion of:					
(1)	Ford Foundation Committe	е				
(2)	Ashok Mehta Committee					
(3)	Rakesh Mehta Committee					
(4)	Balwant Rai Mehta Commit	tee				
101 100						
101. M ₁	k fever is caused due to the d	eficie	ency of:			
(1)	Mg	(2)	P			
(3)	Ca	(4)	K			
102. A c	ombination of trees + crops ar	e cal	led as :			
(1)	Silvi – pasture	(2)	Agri – silvi culture			
(3)	Agri – horti culture	(4)	Horti – Pasture			
103. Slas	sh and burn agriculture is als	o call	ed as :			
(1)	Alley cropping	(2)	Taungya cultivation			
(3)	Shifting cultivation	(4)	Homegardens			
104. The corner stone of agroforestry is:						
(1)	Productivity	(2)	Profitability			
(3)	Adoptability	(4)	Sustainability			

105	.If tw	vo components interact in such	n a wa	ay that yield of one component	
	exceeds yield corresponding to its sole crop without affecting the yield				
	of tl	ne other component, the interes	action	n is known as:	
	(1)	Complementary	(2)	Supplementary	
	(3)	Competitive	(4)	Mutualism	
106	.Leu	caena leucocephala is the scie	ntific	name of :	
	(1)	Chikami	(2)	Bakain	
	(3)	Subabul	(4)	Anjan	
107	.Mim	nosine is found in :			
	(1)	Mulberry	(2)	Mahua	
	(3)	Mulga	(4)	Subabul	
108	.Mat	nursery is related with:			
	(1)	Rice	(2)	Wheat	
	(3)	Maize	(4)	Cotton	
109. Calculate the plant population of maize in 5000 m² area if sown at					
	spa	cing of 50 × 20 cm. :			
	(1)	40,000	(2)	50,000	
	(3)	60,000	(4)	70,000	
				- Transmitted or	

110. One percent is equivalent to:				
(1	1) 100 ppm	(2	(2) 1000 ppm	
(3	3) 10000 ppm	(4	(4) 100000 ppm	
111. T	he 'Akiochi' disease of rice	e is due to	to :	
(1				
(3		732.0	Al toxicityH₂S poisoning	
112. CA	AM system is prevalent in		, and possessing	
(1)	Arid legumes	(2	2) Pineapple	
(3)	Pearl millet		4) Sorghum	
113. Gr	owing of annual crops in	between		
(1)	Relay cropping		2) Inter – cropping	
(3)	Alley cropping	(4)	oropping	
114. Wh	ite tip of maize is caused	due to th		
(-)	Cu	(2)		
(3)	Zn	(4)) Fe	
115. Whi	ich design is suitable whe field :	n fertility	y gradient is in two directions of	
(1)	R.B.D.	(2)		
(3)	Split-plot design	(4)	C.R.D.	
116. Movement of P and K from soil to the root surface takes place due to: (1) Root interception (2) Diffusion				
(1)	Root interception	(2)	Difficulties takes place due to:	
(3)	Mass flow	(4)	Diffusion Osmosis	
	S. A. et land St. Land	25		

117. Which of the following is a C ₄ plant?				
	(1)	Rice	(2)	Wheat
	(3)	Soybean	(4)	Maize
118. The first mustard variety developed by somatic hybridization is:				
	(1)	Pusa Bold	(2)	Pusa Jaikisan
	(3)	Pusa Agrani	(4)	Pusa Kalyani
119. The cause of the great Bengal Famine was:				
	(1)	Blast of rice	(2)	Brown spot of rice
	(3)	Rust of wheat	(4)	Karnal bunt of wheat
120. Which among the following is another name for vitamin B_{12} ?				
	(1)	Niacin	(2)	Pyridoxal phosphate
	(3)	Cyanocobalmin	(4)	Riboflavin

ROUGH WORK रफ़ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा।
 केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ॰ एम॰ आर॰ पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाड़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।